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A new method is presented for the numerical solution of some problems appearing in 
meteorology. The method is based on Lagrangian coordinates in contrast to other 
methods, which use the Eulerian representation. Lagrangian descriptions permit the 
accurate treatment of moving interfaces and free boundaries without using difficult 
interpolation schemes. Some examples illustrate the advantages of this new technique. 

1. INTRODUCTION 

Many different numerical methods have been developed for calculating the 
transient dynamics of incompressible fluids. A survey of different finite-difference 
schemes for the primitive equations for a barotropic fluid were given by Grammelt- 
vedt in Ref. [I], who also cited in his paper a list of previous references. 

All papers cited in Ref. [l] are based on the Eulerian concept of a fluid moving 
through a stationary network of cells and are most useful for problems involving 
large fluid distortions, as. expected in meteorological problems. 

Kasahara et al. [2] solved the problem of a moving cold front in the atmosphere, 
assuming a simplified mathematical model. His solution was also based on the 
Eulerian description. The motion of the free boundary, appearing in this problem, 
was calculated by using a special interpolation scheme [2]. 

Problems involving moving interfaces or complicated boundaries can be handled 
much more easily in a Lagrangian description of the moving fluids. The usefulness 
and the difficulties of the Lagrangian method are described in the literature in 
many different papers [3,4]. We will briefly review some of the well-known facts. 

A two-dimensional Lagrangian coordinate system that initially completely 
defines a system will often transform into one with areas of poor definition because 
of deformations of the grid during the motion of the fluid particles. Usually the 
trouble can be attributed to turbulence. 
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Another important feature, caused by the movement of the approximating grid 
with the fluid, is that the region describing the flow is always approximated by the 
same number of mesh points; thus the initial accuracy of the approximation is in 
general maintained throughout the calculation. Lagrange calculations have proven 
to be very accurate as long as the approximating mesh remains regular, and, in 
general, the number of mesh points needed is surprisingly small. Lagrange calcula- 
tions are ideal in terms of accuracy and number of mesh points needed. 

Unfortunately, the very features of the Lagrangian method which make it so 
useful are also the ones which make it totally unsatisfactory for calculating a flow 
in which turbulence develops. In such a case the mesh points will attempt to follow 
this motion and particles of mass which were initially nearest neighbors no longer 
remain so physically. The approximating mesh will become highly distorted, and 
the calculation becomes quite inaccurate if possible at all. In such situations the time 
interval required for stability tends to approach zero because the time interval 
needed for stability is proportional to the shortest distance separating two grid 
points. The minimum distance between two neighbors will tend to approach zero 
when the mesh becomes distorted. 

These would appear to be the reasons why Lagrangian description was not used 
in meteorology. The expected deformation of a Lagrangian grid as described by 
Welander [8] is tremendous. 

2. BMIC EQUATIONS FOR THE CALCULATED MODELS 

Two problems were investigated in order to test the usefulness of the Lagrangian 
description in meteorology. The first (Problem A) had been solved by Grammelt- 
vedt [l], Williamson [6], and Houghton et al. [5]. The second (Problem B) had 
been solved by Kasahara et al. [2]. 

In Problem A we calculated the motion of a barotropic fluid with a free surface. 
The hydrostatic fluid is incompressible, homogeneous, inviscid, and confined in a 
channel corresponding to a middle latitude band on the earth. The lower surface is 
flat and rigid, but the upper surface is free. 

The basic equations for this model in Lagrangian form are 

Ut =f.v-g.+ @jYk - &cYJ, (1) 

Vt = -f * u + g * $ &xl, - h,Xj), (2) 

Xt = u, (3) 

Yt = 0, (4) 

(Wt = 0, (5) 



512 RITTER 

Y (NORTH) 

K+I 

K-i 

J-l J J+I 
rX(EAST) 

where 

FIG. 1. Lagrangian coordinate network (j, k). 

X, y are the Eulerian Cartesian, east-west and north-south coordinates, 
u, u are the velocity components in the x and y directions, 
h is the depth of the fluid, 
A = (xjy, - xkyj) is the Jacobian of transformation, 
f is the Coriolis parameter, 
g is the acceleration of gravity. 

All functions are dependent on the Lagrangian labels (j, k) and the time t. 
x = x(j, k, t); y = y(j, k, t); etc. Equations (1,2) are the momentum equations 
in Lagrangian description, and Eq. (5) expresses the conservation of mass. The 
equation for total energy (potential plus kinetic) integrated over the channel is 

E = 1 1 +(u” + u2 + gh) h da, (6) 
0 

where 
(3 = area of integration. 

In Problem B we calculated the motion of a cold air front in the atmosphere 
using the same assumptions as described by Kasahara et al. [2]. After making the 
simplifications assumed by Kasahara, one gets a set of partial differential equations 
very similar to those described in Problem A. The three dependent variables are 
two horizontal velocity components and the height of the cold air layer; the three 
independent variables are two space coordinates and time. Using an Eulerian 
description, Kasahara et al. [2] had to overcome a special numerical difficulty which 
arises because the moving front is a free boundary along which the differential 
equations are, in a certain sense, singular. They developed a special interpolation 
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FIG. 2. The domain of numerical integration. 

FIG. 3. Vertical cross section of the cold air layer. 

scheme to calculate the motion of the front points [2] in every time step. After 
carrying out the numerical calculations over a large enough time interval they 
obtained the asymmetric shape of the moving front, developed from an initially 
sinusoidal pattern. Such a development was predicted qualitatively by Stoker [7], 
and this phenomenon also has actually been observed in nature. 

Figures 2 and 3 show the initial state of the dynamic system. The cold air is 
bounded by the curve C (Fig. 2), along which the height h of the cold air is zero 
during the entire time. Figure 3 is a vertical cross section of the cold air layer. 

We were able to reproduce the results of Ref. [2] without interpolation by using 
the moving front as a part of a Lagrangian grid and solving the following equations 
of motion: 

ut = f - 2, - G . f (hjyk - h,y,), (7) 
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vt = -f.u+F+G.f(h,x,--h,x~), (8) 

xt = 24, (9) 

Yf = v, (10) 
(/zA), = 0. (11) 

All the symbols have the same meaning as before [Eqs. (l-5)]. Additional symbols 
are 

where p, p’ are the densities of the cold and warm air, respectively, and 6’ is a given 
constant velocity. The essential difference now is, of course, the moving southern 
boundary C describing the motion of the cold air front. 

3. BOUNDARY AND INITIAL CONDITIONS 

In Problem A rigid boundaries were assumed along two latitude circles. The 
northern and southern boundaries, 4500 km apart, are rigid walls at which the 
normal velocity components vanish. The flow is assumed to be periodic in the 
east-west direction, with a wavelength of 6000 km. A p-plane approximation is 
used. 

The height of the free surface is given initially, and the velocity components u 
and v are calculated from the geostrophic approximation. 

We tested our method for three different initial conditions, as given in Ref. [I], 

h’“‘(& y) = H, + H1 tanh ( g’Y2i “I ) + H, sech2 ( g(Y D .J%l ) .f(i)@), (12) 

i = 1,2,3, 

i = 1 : f’“(x) = sin (F), 

i = 2 : f(2)(x) = [0.7 sin (F) + 0.6 sin (%)I, 

i=3: f(3)(x) = [0.8 sin (%) + 0.5 sin (?)I, (A/III) 
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where L is the length, D is the width, and y,, = D/2 is the middle latitude of the 
channel. 

In the numerical calculations the following values are adopted: 

Ho = 2000 m, g = 10 m * set+, f = 1O-4 set-l, 

HI = -220 m, L = 6000 km, /I = 1.5 . IO-llsec-l *m-l, 

H, = 133 m, D = 4500 km. 

In Problem B we assumed that U, U, and h are periodic in the space variable x 
with a period equal to the distance L between the east and west boundaries. The 
motion of the northern boundary was calculated using the simple assumption that 
the velocities of the boundary points are equal to the velocities of their neighbors. 
The southern boundary, which describes the moving front, is defined as a line 
along which h = 0 the entire time. Assuming the height in the row outside this 
moving boundary to be equal to minus the height in the last row inside the bound- 
ary assures that the height along the moving front always remains zero. 

The calculations were performed for both initial conditions given in Ref. [2], 

h(l)(x, y) = & ($27 - ii)( y - y,(x)) for F)(x) 2 y > yO(x), 

5 U’ > G(U’ = constant), 

ye(x) = Cl sin ( + x - +-) + C, , 

P(x) = ye(x) + Y, 

U(X, J) = ii = constant, 

4x, Y) = 0, 

y(2) - b 
h’2’(x, Y) = h’% Y) * y(2, _ ye(x) for Y(l)(x) Z y Z Ye(x) , 

b = Cl + C2, F2) = Y + c, - c, , 

(B/I) 

G ahc2’ 

u(x3 y) = - 7 JY + 5 u’ 

Y(X, y) = 7 zg 

geostrophic assumption (B/II) 
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The numerical values adopted were 

L = 5 - IO6 ft = 1.524 * log m, 

Y = 5 - 106ft = 1.524 * 10sm, 

Cl = 5 * lo5 ft = 1.524 . lo5 m, 

C, = 23.75 . lo6 ft = 7.239 . lo6 m, 

g = 32.1521 ft * set-2 = 9.80 m * sec2 

f = 1O-4 set-l, 

U = 10 ft . set-l = 3.048 m . set-l, 

pl- u’ = 50 ft . set-l = 15.24 m * set-I, 
P 

G = g (1 - 5) = 0.6ft . set+ = 0.18288 m . set-2. 

4. FINITE DIFFERENCE SCHEME AND THE PROBLEM OF STABILITY 

The functions x, y, 11, and u are defined at the vertices x(j, k), y(j, k) of the 
quadrilateral cells of the Lagrangian grid; heights for the center of each cell, 
h(j + 8, k + $), and also areas A (Fig. 4) are stored. 

The quantities stored for the cells and their vertices are advanced in time through 
small time steps, At. In each cycle the new values of the velocities are first calculated, 
then the vertices are moved to new positions. Using the new positions one calculates 
the new areas. Finally, using conservation of mass, one is able to calculate the 
new heights and to complete the cycle, 

u(j, k, IZ + 1) = ii(j, k, n) + dt . A”(j, k, n), 

u(j, k, n + 1) = fi(j, k, n) + dt * Ag(j, k, n), 

x(j, k, n + 1) = x(j, k, n> + At * u(j, k, 4, 

~(5 k n + 1) = v(j, k, n) + dt * u(j, k, n), 

[hAl(j + :, k + 4, n + 1) = Wl(j + 4, k + Q, n>, (13) 

where A is the area of the quadrilateral whose vertices are at (1, 2, 3, 4) (Fig. 4), 
and A”, A” are the accelerations in the x and y directions. 
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FIG. 4. Finite difference scheme. 

Explicit difference approximations for the accelerations A”(j, k, n) and AU k, n) 
are given in the Appendix as they appear in the literature [3,4], 

u(j, k, n) = a . ii(j, k, n) + (1 - a) u(j, k, 4, 

V(j, k, n) = 01 . a(j, k, n) + (1 - LX) v(j, k, n), (14) 

ii(j, k, n) = $[u(j + 1, k) + u(j - 1, k) + u(j, k + 1) + u(L k - 111, 

z(j, k, n) = $[v(j + 1, k) + v(j - 1, k) + v(j, k + 1) + v(j, k - IN, 
O<cw<l. (15) 

In order to stabilize the finite difference scheme it is necessary to use some kind 
of “artificial viscosity.” In analogy to the well-known Lax-Wendroff method, we 
found that we could accomplish this by using an average velocity of 6, ii in the 
momentum equation. For CY. = 0, the set is unstable; for (Y = 1, the set is super- 
stable; after some time all points are moving with the same velocity. We found 
that c1 = 0.02 made our set stable as long as the deformation of the grid was not 
too great. 

The criteria for choosing the time step are based on two assumptions. First, it is 
obvious that in a Lagrangian description a vertex should not be moved during one 
time step so far that it crosses over a neighboring vertex. As long as the deformations 
of the grid caused by physical reasons are not too big, the calculations are possible 
and meaningful. 

The second assumption is based on the well-known Courant-Levy criterion, 
which in our case may be expressed by 

dt < min ( &.A k> 1 
112 

u2(j, k) + u2(j, k) + gh(j, k) ’ Co ’ (16) 
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where 
A(j, k) is the area of the quadrilateral, 
u, u are the velocities of the fluid, 
( gh)lj2 is the velocity of gravity waves, 
C, = constant ~0.1. 

5. RESULTS OF THE CALCULATIONS 

The set of equations describing Problem A was integrated with initial conditions 
A/I, A/II, and A/III until instability occurred. Using a basic grid of 16 x 12 
gridpoints corresponding to a grid size of 400 km in the west-east and south-north 
directions, respectively, we were able to continue our calculations for four days; 
the time step used, 60 set, remained constant. After four days the deformations of 
the grid were growing because of the inherent turbulence of the fluid, and finally 
after six days no meaningful calculation was possible. By using smaller time steps 
it was possible to continue the calculations for physically longer times, but the 
deformations of the grid still finally became too great, pointing out that this result 
reflects the physical reality of the problem. 

We were unable to stabilize our equations for a longer time by adding to the 
momentum equations a term containing viscosity [4] and by using reasonable 
values for the kinematic viscosity v. 

Some examples of our results are given in Fig. 5. Figures 5a, b show the Lagran- 
gian grid and the height field at time T = 0. Figures 5c-f show the grid and the 
height field after one and three days of integration using initial conditions A/I. 
Calculations based on initial conditions A/II and A/III essentially gave the same 
results. 

All our calculated results, as well as those published in previous papers [l, 5,6], 
depend still on the number of grid points and on the time step used. In order to 
get a numerical solution converging to the exact solution of the problem, it is 
necessary to use a much denser grid and therefore also much more computing time. 
Our calculations were sufficient to convince us that a Lagrangian description is 
applicable, at least for short range numerical weather prediction. 

Problem B was integrated for both initial conditions B/I and B/II. The Lagran- 
gian grid used in this case is formed initially by sinusoidal lines parallel to the 
moving front (lines with k = constant) and by lines parallel to the direction of the 
y axes (lines with j = constant), Fig. 6. All calculations were performed over 21 
grid points (20 intervals) in both directions and with a time step dt = 30 sec. The 
moving front points are a part of the grid from the very beginning, and their 
motion is calculated in just the same way as all the other points of the fluid, 
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FIG. 5. The motion of a barotropic fluid (Case A/I). The height contour lines are shown at 
50 m intervals. (a) Lagrangian grid 7’ = 0; (b) height field T = 0; (c) Lagrangian grid T = 24 hr; 
(d) height field T = 24 hr; (e) Lagrangian grid T = 72 hr; (f) height field T = 72 hr. 
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FIG. 6. The moving front (Case B/I). The height contour lines are drawn at 5000 ft intervals. 
(a) Lagrangian grid T = 0; (b) height field T = 0; (c) Lagrangian grid T = 4 hr; (d) height 
field T = 4 hr; (e) Lagrangian grid T = 8 hr; (f) height field T = 8 hr. 
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FIG. 7. The moving front (Case B/II). The height contour lines are drawn at 5000 ft intervals. 
(a) Lagrangian grid T = 0; (b) height field T = 0; (c) Lagrangian grid T = 5.5 hr ; (d) height 
field T = 5.5 hr; (e) Lagrangian grid T = 11 hr; Q height field T = 11 hr. 
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FIG. 8, Height contour pattern of cold air for Case A at t = 0. The contour lines are drawn 
at 5000 ft intervals. (Reprinted from Ref. [2].) 
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RG. 9. Height contour pattern of cold air for Case A at t = 8 hr. The contour lines are 
drawn at 5000 ft intervals. (Reprinted from Ref. 121.) 
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FIG. 10. Height contour pattern of cold air for Case B at f = 0, similar to Fig. 8. (Reprinted 
from Ref. [2].) 

FIG. 11. Height contour pattern of cold air for Case B at t = 11 hr, similar to Fig. 9. (Re. 
printed from Ref. 121.) 

581/6/3-12 
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always using the boundary condition h = 0. In Figs. 6a, b we show the initial form 
of the grid and the height contour pattern of the cold air for initial conditions B/I. 
The contour lines h = constant are drawn at 5000 ft intervals. The front points 
are given by k = 1 for all j values. Figures 6c-f show the grid points and the con- 
tour pattern of the cold air height at T = 4 h and 8 h. The location of the initial 
curve of the front, corresponding to a uniform translation in the x direction, is 
indicated by the dashed line in Fig. 6f. 

The entire front progressed eastward. The cold front moved eastward faster than 
the warm front,and the characteristic asymmetry is clearly visible. Points on the cold 
front moved southeastward, and those on the warm front moved northwestward 
on the average, whereas both fronts themselves propagated eastward. 

The result is essentially the same as that calculated by Kasahara et al. [2], 
Because of our special choice of this Lagrangian grid, we were able to reproduce 
their results without any interpolation procedure. The necessary computing time 
on the Control Data 6600 was 140 sec. 

Our results, based on initial conditions B/II, are shown in Fig. 7. The initial 
form of the grid and the height contour pattern of the cold air are shown in Figs. 
7a, b, which are similar to Figs. 6a, b. But in this case the initial wind field is 
geostrophic in both directions. The slope of the height of the cold air is constant 
in the y direction but variable with respect to the x direction. Figures 7c-f show 
the grid points and the contour pattern of the cold air height at T = 5.5 hr and 
11 hr. Just as before, it was again observed that the entire front system progressed 
eastward and the characteristic assymetry was again clearly visible after 11 hr 
(Fig. 7f). In order to compare our results with that previously calculated in Ref. [2], 
we reproduced, with the permission of the authors, some figures of their paper. 
Their Figs. 8-9 correspond to our Fig. 6 and their Figs. lo-11 to our Fig. 7. 

The total mass of the moving air is automatically conserved in a Lagrangian 
description, and the total energy of the system is approximately constant in both 
cases with a variation of less than 1 % during the whole integration time. 

6. CONCLUSIONS 

This paper represents a first step in the development of a new numerical method 
for calculating the transient dynamics of hydrostatic incompressible fluids. The 
method uses Lagrangian coordinates, which make the treatment of moving bound- 
aries and material interfaces straightforward. 

The new method is illustrated by some test calculations that establish its validity 
and usefulness. In general, it is most suited for problems not undergoing large 
distortions but requiring an accurate knowledge of moving fluid boundaries. 
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APPENDIX 

Detailed difference equations for the acceleration terms are written out in this 
appendix. The equations are for interior vertices and cells. The necessary changes 
at the different boundaries are described in Section 3. 

Ax(j, k> 

= & (H(j + 4, k + i)[YO + 1, k> - W> k + 111 
9 

+ H(j - 4, k + iJW(-i, k + 1) - Y(j - 1, k)] + H(j - 8, k - 4) 

* ~Y~j-~,k)-Y~j,k-~)1+~~j+~,k-~)[Y(j,k-1)-Y(j+1,k)J) 

+$[~(j+1,k)+VOj--1,k)+~(j,k+l)+V(j,k-l)]~R(j,k), 
(A-1) 

where 

4.L 4 
= WU + B, k + 4) f A(j + 4, k - 4) 

+ 4j - B, k + $1 + 4j - 4, k - 81, 

= & WV, k + 1) - W + 1, k)l[X(j + 1, k + 1) - X(j, k) , 

64.2) 

+ X(j + 4 k) - X(j, k + 111 + [W, k + 1) - Y(j - 1, k)l[X(j, k + I) 

-~(j-1,k)+~(j,k)-~(j-l,k+1)1+[Y(j-l,k)-Y(j,k-l)] 

. [X(j,k)-X(j-Lk-l)+X(j,k-l)-X(j-l,k)]+[Y(j+l,k) 

- Y(j, k - l)lW(j + 1, k) - X(j, k - 1) + X(j + 1, k - 1) - X(j, k)]), 
M.3) 

and similar expressions for Ag(j, k), 

AU k) 
= & VW + 4, k + WXL k + 1) - X0 + 1,k)l 

+ & - 8, k + NXG - 1, k) - X(X k + I>] + H( j - 4, k - Q) 
. LVj, k - 1) - X(j - 1, k)l + H(j + 4, k - &)[X(j + 1, k) - X(j, k - l)]) 

-$W(j+l,k)+Wj-Lk)+W,k+l)+U(j,k-l)].Q(j,k), 
(-4.4) 
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where 

= & (W(j + 1, 4 - XL k + l)lW(j, k + 1) - Y(j + 1, k) , 

+Y(j+Lk+I)-Y(j,k)l+I~(j,k+1)-~(j-1,k)l[Y(j,k+l) 

-Y(j-l,k)+Y(j-l,k+l)-Y(j,k)]+[X(j,k-l)-X(j-l,k)] 

. W(j-Lk)-Y(j,k-l)+Y(j,k)-Y(j-l,k-l)l+[X(j+l,k) 

- Jf(j, k - l)l[Y(j + 1, k) - Y(j, k - 1) + Y(j, k) - Y(j + 1, k - I)]). 

(A.5) 

The area A(j + 4, k + 4) is calculated as the sum of two determinants (Fig. 9, 

4j + 4, k + 8) = + 

ACKNOWLEDGMENTS 

-Jm, w, 1 
X(4), Y(4), 1 
W), Y(l), 1 1. 64.6) 

The author is very indebted to B. Haurwitz and P. D. Thompson, of the NCAR Advanced. 
Study Program, for their generous hospitality in providing the stimulating environment in which 
this work was carried out and for enabling him to use the Control Data 6600 computer to perform 
the necessary computations. He would also like to thank A. Kasahara and D. Williamson of the 
NCAR Laboratory of Atmospheric Science for many useful discussions and D. Robertson for 
his aid in using different plotting routines. The author is also indebted to Prof. R. D. Richtmyer 
of the University of Colorado Mathematics Department for his careful reading and valuable 
criticism of the manuscript. Finally, the author wishes to express his gratitude to the Scientific 
Department of the Ministry of Defense in Israel for financial assistance which made his research 
trip to the United States possible. 

REFERENCES 

1. A. GRAMMELTVEDT, Mon. Weather Rev. 97 (1969), 384. 
2. A. KASAHARA, E. ISAACSON AND J. J. STOKER, Tellus 17 (1965), 261. 
3. Methods in Computational Physics, (B. ALDER, S. FERNBACH, AND M. ROTENBERG, Eds.), 

Vol. 3, Academic Press, New York, 1964. 
4. C. W. HIRT, J. J. COOK, AND T. D. BUTLER, Los Alamos Scientific Lab., Rep. LA-DC-10584. 
5. D. HOUGHTON, A. KASAHARA, AND W. WASHINGTON, Mon. Weather Rev. 94 (1966), 141. 
6. D. WILLIAMSON, NCAR Manuscript 68-169 (1968). 
7. J. J. STOKER, “Water Waves,” Chapter 10, Interscience, New York, 1957. 
8. P. WELANDER, Tellus 7 (1955), 141. 


